
Static solutions from the point of view of comparison geometry
Martin Reiris 
 
Citation: J. Math. Phys. 53, 012501 (2012); doi: 10.1063/1.3668045 
View online: http://dx.doi.org/10.1063/1.3668045 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v53/i1 
Published by the AIP Publishing LLC. 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 19 Sep 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1760606161/x01/AIP-PT/JMP_CoverPg_082813/comment_1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Martin Reiris&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3668045?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v53/i1?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


JOURNAL OF MATHEMATICAL PHYSICS 53, 012501 (2012)

Static solutions from the point of view of comparison
geometry

Martin Reirisa)

Max Planck Institute für Gravitationasphysik, Albert Einstein Institute, Germany

(Received 27 April 2011; accepted 2 November 2011; published online 5 January 2012)

We analyze (the harmonic map representation of) static solutions of the Einstein
equations in dimension three from the point of view of comparison geometry. We
find simple monotonic quantities capturing sharply the influence of the Lapse func-
tion on the focussing of geodesics. This allows, in particular, a sharp estimation
of the Laplacian of the distance function to a given (hyper)-surface. We apply the
technique to asymptotically flat solutions with regular and connected horizons and,
after a detailed analysis of the distance function to the horizon, we recover the
Penrose inequality and the uniqueness of the Schwarzschild solution. The proof of
this last result does not require proving conformal flatness at any intermediate step.
C© 2012 American Institute of Physics. [doi:10.1063/1.3668045]

I. INTRODUCTION

In this article, we introduce a family of quantities, denoted by Ma (where a, an arbitrary real
number, is the parameter of the family) naturally attached to (integrable) geodesic congruences
F , of static solutions of the Einstein equations in dimension three. The invariants (which can be
seen as a real functions over the range of the congruence) are shown to be monotonic along each
of the geodesics of F . Moreover, whenever Ma is stationary along a geodesic γ of F , then the
local geometry along γ can be seen to be of Schwarzschild form. In this sense, Ma measures a
certain departure of the given static solution to the Schwarzschild solution. The framework that we
will develop out of these invariants is a natural extension of the standard comparison techniques
of Riemannian spaces of non-negative Ricci curvature. However, as we incorporate into Ma the
influence that the lapse exerts on the Ricci curvature and, as a result, the monotonicity of Ma

sharply captures the departure from the Schwarzschild solution (not from the Euclidean space),
the framework here developed can be best described as one that compares static solutions to the
Schwarzschild solution. It is thus not peculiar that when the technique is applied to asymptotically flat
static solutions with regular and connected horizons, the uniqueness of the Schwarzschild solution is
achieved with remarkable naturalness. It is worth noting that the novel proof of this central result in
general relativity that we shall provide does not require the intermediate step of proving conformal
flatness of previous proofs. The ideas that we will describe can be interpreted as partial results on
the bigger proposal of developing a more complex comparison theory for static solutions in arbitrary
dimensions.

Before continuing with the description of the contents, we briefly introduce static solutions of
the Einstein equations and summarize some properties that would place the contents into an adequate
perspective.

A. Elements of static solutions

A static solution of the Einstein equations in dimension three is given by a triple (�, g, N) where
� is a smooth Riemannian three manifold possibly with boundary, g is a smooth Riemannian metric

a)Electronic mail: martin@aei.mpg.de.
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and N, the Lapse Function, is a smooth function, strictly positive in int(�), and satisfying

N Ric = ∇∇N , (1)

�N = 0. (2)

These equations, note, are invariant under simultaneous but independent scalings on g and N.

Remark 1: In this article, we will restrict to dimension three. Our most important invariant, the
quantity M (see later), is monotonic only in dimension three and we do not know, at the moment,
a replacement of it to higher dimensions. The static Einstein equations (1) and (2) are valid in any
dimension.

The description of static solutions is better separated into local and global properties. From the
local point of view, the geometry of static solutions is controlled in C∞ by two weak invariants. This
is a direct consequence of Anderson’s curvature estimates1 (applying in dimension three) which are
described as follows. Let (�, g, N) be a static solution of the Einstein equations, where (�, g) is a
complete Riemannian manifold with or without boundary. Then there is a universal constant K > 0
such that for any p ∈ � we have

|Rm| + |∇ ln N |2 ≤ K

dist(p, ∂�)2
, (3)

where if ∂� = ∅ we set dist(p, ∂�) = ∞. Note that this shows, in particular, that the only complete
and boundary-less static solution in dimension three is covered (after normalizing N to one) by the
trivial solution (R3, gR3, N = 1). Anderson’s curvature estimates together with the Bishop-Gromov
volume comparison and standard elliptic estimates imply the following interior estimates for static
solutions in dimension three.

Lemma 1 (Interior’s estimates (Anderson)): Let � be a closed three-dimensional manifold with
non-empty boundary ∂�. Suppose that (�, g, N) is a static solution of the Einstein equations. Let
p ∈ �, let d = dist(∂�), and let V1 = Vol(B(p, d1)) for d1 < d. Then there is d2(d, d1, V1) >

0, and for any i ≥ 0 there are �(d, d1, V1, i) > 0, I(i, d1, V1) > 0, such that in j(p) ≥ I and
‖∇ i Rm‖L∞

g (B(p,d2)) ≤ �.

These interior estimates, in turn imply, as are well known, the control of the Ci
{x j } norm of the

entrances gij of g, in suitable harmonic coordinates {xj} covering B(p, d2), and from them pre-
compactness statements can be obtained.

The global geometry of static solutions instead is greatly influenced by boundary conditions
and, in many cases, boundary conditions provide uniqueness. This occurs when, for instance, one
assumes that ∂� consist of a finite set of regular horizons plus further hypothesis on the asymptotic
of (�, g) at infinity. We will adopt the following definition (see Ref. 1).

Definition 1: The boundary ∂� of the smooth manifold � is a regular horizon iff ∂� is a finite
union of compact (boundary-less) surfaces Hi, i = 1, . . . n, ∂� = {q/N(q) = 0} and at each Hi we
have |∇N ||Hi > 0.

It follows easily from the static equations (1) and (2) that every regular horizon ∂� is totally geodesic
and |∇N| is constant and different from zero on each component.

Perhaps the easiest examples of complete solutions with regular horizons are the Flat solutions
that we will denote by the triple (�F, gF, NF). They have the presentation

�F = [0,∞) × T 2, NF = r, gF = dr2 + hF , (4)

where hF is a flat metric in T2. The family is parameterized by the set of flat metrics in T2 (non-
isometric). Note that we have demanded that N grows linearly with respect to arc length and with
slope one. Of course any N that grows linearly can be scaled to have growth of slope one.
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Yet, the prototypical and central examples of static metrics are the Schwarzschild solutions.
Recall, the Schwarzschild solution (�N, gS, NS) of mass m ≥ 0 has the presentation

�S = [2m,∞) × S2, NS =
√

1 − 2m

r
, gS = dr2 + r2(1 − 2m

r
)d�2, (5)

while if m < 0 the presentation

�S = (0,∞) × S2, NS =
√

1 − 2m

r
, gS = dr2 + r2(1 − 2m

r
)d�2. (6)

The “uniqueness of the Schwarzschild solution,” as in known today and in the form presented below,
came as the result of several efforts, starting from the seminal work of Israel in 1967. For the history
of the developments which lead to the proof of this important result as well as accurate references
we refer to the article.8

Theorem 1: (Schwarzschild’s uniqueness, Refs. 5, 7, and 4): Let (�, g, N) be a static solution
of the Einstein equations of dimension three. Suppose it is asymptotically flat (with one end) and with
regular, possibly empty, and possibly disconnected horizon ∂�. Then the solution is a Schwarzschild
solution of non-negative mass.

Several hypothesis of this theorem can be relaxed still obtaining the same uniqueness outcome.
For instance, suppose there is one end but the hypothesis of asymptotic flatness, or even the topo-
logical nature of the end, is withdrawn, then results exist showing that the solution is still one of
the Schwarzschild families of positive mass. In particular, when N ≤ N0 < ∞ but nothing of the
end is known, not even the a priori topology, then it can be shown that the solution is indeed a
Schwarzschild solution. This follows from a combination of results. First, observe that N cannot go
uniformly to zero over the end, for in such case, as N is harmonic and is zero over the horizon, we
would violate the maximum principle. Using the notation in Ref. 1 denotes by t(p) the g-distance
from a point p to the horizon H. Denote also by B(H, t̄) the ball of center H and radius t̄ , namely,
B(H, t̄) = {p/t(p) < t̄}. Now, from Theorem 0.3 (ii) in Ref. 1, either the end is asymptotically flat
or small in the sense that

∫ ∞ 1
A(∂ B(H,t̄)) dt̄ = ∞. Assume N ≤ N0. Consider f = N0 + 1 − N. Then

�f = 0 and �ln f = − |∇ln f|2. Define F(t) := ∫
B(H,t)\B(H,t̄1) |∇ ln f |2dV . For t1 small, we have∫

∂ B(H,t1) g(∇ ln f, nin)d A > 0, where nin is the unit normal to ∂B(H, t1) pointing inwards to the ball.

Using this fact, integrating �ln f = − |∇ln f|2 over B(H, t) \ B(H, t̄1) and using Cauchy-Schwarz
one easily deduce the inequality f ′/F2 ≥ 1/A. From it one gets 1/F(t) ≤ 1/F(t2) − ∫ t

t2
1
A dt̄ , where

t2 > t1. Thus if the end is small, one would get F = ∞ at a finite distance form H, which is not
possible. The same occurs when it is known that outside a compact set, each end is homeomorphic
to R3 minus a ball9 and over there the metric N2g is complete, which occurs, for example, when N
≥ N0 > 0. In all these generalizations, which are important for deeper understanding of Einstein’s
theory, it is assumed that the space (�, g), as a metric space, is complete.

We feel that the following broader conjecture may be accessible.

Conjecture 1: Let (�, g, N) be a complete solution of the static Einstein equations with regular
but possibly disconnected (non-empty) horizon ∂�. Suppose that the conformal metrics N2g and
N− 2g are complete outside given domains of compact closure on each end of (�, g). Then the
solution is either a Schwarzschild solution or a flat solution.

Observe that no assumption is made on the topology of the ends.
When boundary data are prescribed, and are not the data of a regular horizon, and the hypothesis

of asymptotic flatness is kept, then much less is known about the existence of solutions although a
conjecture2 and partial results do exist10 under some hypothesis. In whatever case, Dirichlet-type
of problems for the Einstein equations are interesting from physical and mathematical reasons. A
theory, a highly necessary task, is still lacking.

The Schwarzschild family is unique but why? Are the present proofs satisfactory as an answer
to this question? Do we need to place the problem of the uniqueness of the Schwarzschild family

Downloaded 19 Sep 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



012501-4 Martin Reiris J. Math. Phys. 53, 012501 (2012)

into a larger one to understand it better? Which one would be that bigger perspective? Could it be
a Dirichlet-type of theory for the static Einstein equations? Despite all the accumulated knowledge,
some aspects of the uniqueness of the Schwarzschild solutions remain (to us) somehow mysterious.
The present work would try to clarify the phenomenon from the perspective of comparison geometry.
Finally, it is worth remarking that there are yet further reasons of why it is important to have different
proofs and points of view regarding Theorem 1. Just mention that the elusive and yet inconclusive
notions of localized energy or the even more conjectural notion of entropy may have to do and could
be better clarified with different understandings of the Schwarzschild uniqueness.

B. Ma and comparison geometry

The idea underlying the technique that we will describe is rather simple. First, and most
important, we will work in the harmonic map representation of static solutions. Namely, instead
of working with the variables (g, N), we will work with the variables (g, N) = (N 2g, ln N ). The
Einstein equations (1) and (2) now become

Ric = 2dN ⊗ dN, (7)

�N = 0. (8)

It is apparent from here that Ric ≥ 0, which is a quite central property. Consider now a congruence
of geodesics (or geodesic segments) F for the metric g minimizing the distance from any of their
points to a (hyper)-surface S. Thus, any geodesic in F has an initial point in S. We will assume
the geodesics (or geodesic segments) are inextensible beyond their last point or that the last point is
the point on γ where γ stops to be length minimizing to S. It can be that such last point does not
exist in which case the geodesic “ends” at “infinity.” It is known that the Cut locus C, namely, the
set of last points of the geodesics in the congruence is a closed set of measure zero. Outside C the
distance function to S is a smooth function with gradient of norm one. Given a point p in �, we will
denote by s(p) the distance from p to S. Consider now a point p, not in C and not in S and around
it consider the smooth surface formed by the set of points which have the same distance to S than
p (the equidistant surface or the level set of the distance function). The second fundamental form
of such surface in the outgoing direction (from S) at p will be denoted by �(p) or simply �. The
mean curvature will be θ (p) = trh(p)�(p) where trh(p)�(p) means the trace of �(p) with respect to
the induced two-metric in the surface or level set. Thus, we can think θ as a function along geodesics
γ in F . The mean curvature satisfies the important focussing equation or Riccati equation along the
geodesics γ ,

θ ′ = −|�|2 − Ric(γ ′, γ ′) = −θ2

2
− Ric(γ ′, γ ′) − |�̂|2. (9)

Above, ′ denotes derivative with respect to arc length and �̂ is the traceless part of �. Recall that

�s = θ.

Thus any estimate on θ obtained out of the focussing equation serves as an estimate on the Laplacian
of the distance function.

For instance, if Ric ≥ 0, then standard estimates in comparison theory follow by discarding the
last two terms in Eq. (9) and integrating the inequality θ ′ ≤ − θ2/2. If s is the distance function to a
point or, the same, the distance function to the boundary of a small geodesic ball plus the radius of
the ball, one gets (Calabi 1958,11), θ ≤ 2/s and

�s ≤ 2/s,

everywhere and in the barer sense (Ref. 6, p. 262). Comparison estimates on areas and volumes of
geodesic balls are obtained from

d A′

d A
= θ, dV ′ = d A,
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where dA is the element of area of the equidistant surfaces to S and dV is the element of volume
enclosed by dA.

The situation we face is similar in that the Ricci curvature is non-negative, but this time the
structure of the Ricci curvature is explicitly given. By incorporating Ric as part of the focussing
inequality, namely, considering

θ ′ ≤ −θ2

2
− 2N′2,

we will obtain a sharp estimate for θ . We will show that for any real number a the quantity

Ma = (
θ

2
(s + a)2 − (s + a))N 2

is monotonically decreasing (Proposition 1) along any geodesic of the congruence and is stationary
if and only if the geometry along the geodesic is of Schwarzschild form (Proposition 2). Thus, we
get the estimate

θ ≤ 2

s + a
(1 + M0

(s + a)2 N 2
),

where M0 is the value of Ma at the start, on S, of the geodesic. The fundamental set of equations
out of which comparison estimates can be obtained is therefore

θ ≤ 2

s + a
(1 + M0

(s + a)2 N 2
), (10)

�s = θ,
d A′

d A
= θ, dV ′ = d A, (11)

� ln N = 0. (12)

To use these set of equations efficiently one must first use the system

�s ≤ 2

s + a
(1 + M0

(s + a)2 N 2
),

� ln N = 0,

together with additional boundary data on N andM0. For the case of the application to the uniqueness
of the Schwarzschild solutions, that we carry out later, the substantial information that is extracted
out of this system is, in a sense, concentrated in Theorem 2, where a distance comparison result is
established between s and ŝ = 2m N 2/(1 − N 2).

From the point of view of areas and volumes comparisons, we note that, by using Eqs. (10)–(12),
the expression

d A

d A0
exp(

∫ s

s0

2

s̄ + a
(1 + M0

s̄ + a)2 N 2
)ds̄)

is seen to be monotonically decreasing too. From it and dV′ = dA suitable information on the growth
of areas and volumes of geodesic balls (with center S) can be obtained. These types of estimates
will play an important role in the proof of the uniqueness of the Schwarzschild solutions in Sec. II.

Yet, the structure of the harmonic-map representation of the Einstein equations is richer than
the information contained in the system (10)–(12). Indeed, Weitzenböck’s formula for the static
equations

1

2
�|∇ f |2 = |∇∇ f |2+ < ∇� f,∇ f > +2 <

∇N

N
,∇ f >2,

valid for any function f, together with Eq. (12) can provide useful estimates on functions of the form
f = f(N). They, in turn, provide useful information on N. These estimates, are worth remarking, have

Downloaded 19 Sep 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



012501-6 Martin Reiris J. Math. Phys. 53, 012501 (2012)

nothing to do with the distance function. The most obvious consequence of Weitzenböck’s formula
comes out when we chose f = ln N. In this case, we obtain

1

2
�|∇ ln N |2 = |∇∇ ln N |2 + 2|∇ ln N |2.

In applications to the uniqueness of the Schwarzschild solutions, we will use, however, the
Weitzenböck formula with the choice f = ŝ = 2m N 2/(1 − N 2). This will provide the important
estimate |∇ŝ| ≤ 1 in Sec. I, which, as we will see, it is necessary to close up the proof of the
uniqueness of the Schwarzschild solutions.

It is worth remarking at this point that many of the techniques here developed carry over the
much bigger family of metrics and potentials satisfying

Ric ≥ 2dN ⊗ dN,

�N ≥ 0, 0 < N < 1.

To show the applicability of Eqs. (10) and (11), as we said before, we will fully analyze from
this perspective asymptotically flat static solutions with regular and connected horizons and recover
Theorem 1. It is worth remarking the naturalness from which the uniqueness of the Schwarzschild
solutions will come out of these comparison techniques. Despite of that, the required analysis will be
somewhat extensive. To prove Theorem 1, we carefully compare the distance function to the horizon,
s, to the function ŝ, through the set of Eqs. (10) and (11). The final goal to achieve is to show the
equality s = ŝ = 2m N 2/(1 − N 2) from which it will follow that M2m has to be stationary along
any length-minimizing geodesic to H (in this case the integral lines of ∇ŝ) and equal to m. It then
follows, from the sharpness of the monotonicity of M that the solution has to be a Schwarzschild
solution (of positive mass). Note a technical aspect however. As N = 0 over the horizon H, the metric
g = N 2g is singular there. Although this will make the analysis technically delicate, a satisfactory
remedy is found if one replaces H by a sequence H
i = {N = 
i } of the 
i-level set of N (
i ↓
0), approaching H, and perform then a limit analysis. This circumvention of the singularity at the
horizon will appear often in the reasonings.

It is worth noting that, at the moment, we do not know how to obtain Theorem 1, when the
horizon is not connected. The exact reproduction of the arguments that leads to the proof of Theorem
1 for connected horizons, applied to the case of non-connected horizons, give interesting results,
which are not difficult to obtain but that will not be given here.

We will now give guidelines of the structure of the article. In Sec. II, we introduce and discuss the
main monotonic quantity M, give explicit examples of the monotonicity and discuss the stationary
case. This section is the core of the article. The other sections discuss further properties of M and
applications. In particular, in Sec. III, we start the discussion of asymptotically flat solutions with
regular and connected horizons. In Sec. III A, we study M over regular horizons. In Sec. III B, we
recall the notion of asymptotic flatness and cite a classical result3 on the possibility to chose special
coordinates at infinity in static solutions displaying precisely the Schwarzschild-type of fall off. The
existence of such coordinate system {x̄} will be central. In Sec. III C, we introduce the important
notion of coordinate-distance lag, measuring a mismatch between the distance from a point p to
the horizon, s(p), and the coordinate distance |x̄(p)|. In Sec. III D, we discuss our first substantial
result. We prove a distance comparison result (Theorem 2) between s and ŝ = 2m N 2/(1 − N 2). To
achieve it, we must show first that the inequality

�s ≤ 2

s + a
(1 + M0

(s + a)2 N 2
)

holds in a barer sense all over the manifold �. This is done in Proposition 10. Without that tool, the
comparison result would not be possible to achieve. Using that we show in Sec. III E that the Penrose
inequality A ≤ 16πm2, where A is the area of the connected horizon and m is the add (ADM) mass,
must hold. In Sec. III F we show, again using the distance comparison, that the opposite Penrose
inequality must hold, namely, A ≥ 16πm2. Thus, after Sec. III F we would have proved that A
= 16πm2. Despite the strong implications of this inequality, the uniqueness of the Schwarzschild
solutions requires further analysis. This is carried out in Sec. III G Indeed it is in this section that
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it is proved that s = ŝ. This follows from a further study of the coordinate-distance lag in Sec. I
where it is shown that it must be zero. An elaboration of the area and volume comparison in Sec. II
finishes the analysis of all the elements of the proof which is summarized in Theorem 3. Further
explanations on the contents and strategies are given at the beginning of the each section.

We will use alternatively the notation (�, g, N) or (�, g, N) = (�, g, ln N ), used according to
which representation is best suited to describe a claim or a statement. When we say that (�, g, ln N )
is an asymptotically flat static solution with regular and connected horizons, we mean that (�, g,
N) is an asymptotically flat static solution with regular horizon as was described before, but that we
will working in its harmonic map representation.

II. A COMPARISON APPROACH TO STATIC SOLUTIONS IN THE HARMONIC
MAP REPRESENTATION

Let (�, g, ln N ) be a static solution in the harmonic representation. To every oriented integrable
congruence F of g-geodesics, we will associate a family of real functions {Ma, a ∈ R} defined over
the range of F . We will show that, fixed a, Ma(γ (s)) is monotonically decreasing for any γ ∈ F
(s is the g-arc length, increasing in the positive direction). This central fact will follow by making
use of the focusing equation (9). The definition of Ma and the proof of its monotonicity are given
in the proposition below. To avoid excessive notation we will use the following convention in the
notation: for every function f defined over the range of F (for example, f = θ or f = N) and γ ∈ F
we will write f := f(γ (s)) and df(γ (s))/ds := df/ds := f ′. Also, for the same reason of economy and
simplicity, we will suppress the sub-index a and write simply M.

Proposition 1: Let F be an oriented integrable congruence of geodesics. Let γ (s), s ∈ [s0, s1]
be a geodesic in F . Let a be a real number and let s̃ = a + s. Then we have

((
θ

2
s̃2 − s̃)N 2)′ = −s̃2 N 2 |�̂|2

2
− (s̃

θ

2
− 1 − s̃

N ′

N
)2 N 2. (13)

Therefore, fixed any real number a, the quantity M = ( θ
2 s̃

2 − s̃)N 2 is monotonically decreasing
along any γ ∈ F (the notation M accounts for “mass”).

Proof: We compute

((
θ

2
s̃2 − s̃)N 2)′ = θ ′

2
s̃2 N 2 + θ s̃N 2 − N 2 + θ s̃2 N N ′ − s̃2N N ′.

We use now the focusing equation (9) to get

((
θ

2
s̃2 − s̃)N 2)′ = −|�̂|2

2
s̃2 N 2 − θ2

4
s̃2 N 2 − s̃N ′2 + θ s̃N 2 − N 2 + θ s̃2 N N ′ − s̃2N N ′.

The six terms following the first on the right-hand side of this expression can be arranged as
−(s̃θ/2 − 1 − N ′/N )2 N 2, thus obtaining (13). �

Example 1 (The Schwarzschild case): Consider a Schwarzschild metric of mass m, of arbi-
trary sign, in the presentations, according to the sign of the mass, of Eqs. (5) or (6). Note that g
= dr2 + r2(1 − 2m/r )d�2 and N2 = (1 − 2m/r). For any given point q in S2 considers the ray [2m,
∞) × {q} (if m ≥ 0) or (o, ∞) × {q} (if m < 0) parameterized by the arc length s = r − 2m of
s = r (respectively, to the sign of the mass). In either case we compute the mean curvature θ as

θ = 2

r
+ 2m

r (r − 2m)
= 2

r

(r − m)

r − 2m
. (14)

Let b = a − 2m if m ≥ 0 and b = a if m < 0, then the quantity M has the following form:

M = (
1

r

r − m

r − 2m
(r + b)2 − (r + b))(1 − 2m

r
) = ((m + b) − mb

r
)(1 + b

r
)
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independently of the sign of the mass. Taking the derivative with respect to arc length and rearranging
terms we obtain

M′ = b2

r
(
2m

r
− 1),

which is explicitly non-positive independently of the sign of the mass. This shows the monotonicity
of M for any value of b. Note that lims→∞M = m + b. Observe too that when b = 0, i.e., a = 2m,
then M is constant and equal to m. �

Example 2 (The flat solutions): For a flat solution (�F, gF, NF), we have g = r2dr2 + r2hF .
Making r2/2 = s we get g = ds2 + 2shF and N2 = 2s, where s > 0. For any point p in T2 consider
the ray [0, ∞) × p. Consider the congruence of geodesics conformed by all these rays. The mean
curvature is calculated as θ = 1/s. Thus for any real number a we have

M = (
1

2s
(s + a)2 − (s + a))2s = −s2 + a2, (15)

which is monotonically decreasing in the domain of s, namely, (0, ∞).
Note that for the “dual” solution (�F, gF, 1/NF) we have, for any real number a, the expression

M = −1/4 + a2/s2 which is monotonically decreasing in the domain of s, namely, (0, ∞). Note
that when a = 0 then M is stationary and equal to − 1/4. �

The next proposition discusses the case when Ma is stationary.

Proposition 2: Let F be an oriented and integrable congruence of geodesics. When, for a given
a, M is constant along a geodesic segment γ (s), s ∈ [s1, s2], then along γ we have

�̂ = 0 (16)

and

N 2 = N 2
0 + 2

M0

s0 + a
− 2

M0

s + a
, (17)

where N0 and M0 are the values of N and M at s = s0 ∈ (s1, s2). We also obtain

θ = 2

s + a
+ 2

M0

(s + a)2 N 2
. (18)

Proof: If along a geodesic γ the value of M remains constant, then the right-hand side of (13)
must be identically zero. This implies that

�̂ = 0,

which shows (16) and also implies that

s̃
θ

2
− 1 − s̃

N ′

N
= 0.

Multiply now this expression by s̃ and rearrange it as

s̃2 θ

2
− s̃ = s̃2 N ′

N
. (19)

Recall that M = (s̃2 θ
2 − s̃)N 2. Using this expression, Eq. (19), and (because we are assuming that

M is constant) writing M = M0 = M(s0), we obtain

M0 = s̃2 N N ′ = s̃2 (N 2)′

2
.
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Moving s̃2 to the denominator of the left-hand side and integrating (in s) from s = s0 to s we
obtain (17). To obtain (18) solve for θ in (s̃2 θ

2 − s̃)N 2 = M0. �
Remark 2 (Further remarks to Proposition 2): Observe form Proposition (2) that (if for some

number a) M is constant along a geodesic γ of infinite length and lims→∞N (γ (s)) = 1, then
making the change of variables r = s + a in (17) and (18) we obtain, along γ , the expressions

N 2(r ) = 1 − 2M0

r
,

θ = 2

r
+ 2M0

r (r − 2M0)
= 2

r

(r − M0)

r − 2M0
,

and including (16)

�̂ = 0,

which, comparing with Example 1, are exactly of Schwarzschild form if we identify M0 with
“a” ADM mass m. Moreover, if γ is defined on (s0 = 0,∞) and γ (s0) “lies” on a “horizon”
(lims→0 N (γ (s)) = 0), then N0 = 0 and 1 = N 2

0 + 2M0/(s0 + a) = 2m/a. Therefore, a = 2m and
s = r − 2m. Note that m = M0 cannot be negative otherwise θ reaches infinity for an s ∈ (0,∞)
(thus the whole γ cannot belong to F). Thus, we establish the same relation s = r − 2m as in a
Schwarzschild solution of positive mass. On the other hand, if γ is defined on (s0 = 0,∞) and
γ (s0) “lies” on a “naked singularity” (lims→0 N (γ (s)) = +∞), then a = 0 and s = r . Note that in
this case m = M0 must be negative otherwise N 2 = 1 − 2m/r = 1 − 2m/s gets negative for small
s > 0. Thus, we establish the same relation s = r as in a Schwarzschild solution of negative mass.

Remark 3: There are several ways to include the summand −2(Ṅ/N )2 to obtain an estimation
on the growth of θ . The following proposition, whose proof is left to the reader, is one such instance.
Although we will not use it for the rest of the article, it illustrates very well, the many ways in which
the focussing equation can be used to extract geometric information.

Proposition 3: Let θ be the mean curvature of the integrable congruenceF . Let γ (s), s ∈ [s0, s1]
be in F . Then we have

1. θN2 is monotonically decreasing, namely, (θ N 2)̇ ≤ −( θ N√
2

− √
2Ṅ )2. Therefore, we have

θ ≤ θ0(N0/N)2, where θ0 = θ (s0) and N0 = N (s0).
2. Suppose that θ (s) > 0 for all s in [s0, s1]. Then we have

θ (s) ≤ 1
1
θ0

+ s−s0
2 + 1

2θ2
0 N 4

0

(N 2−N 2
0 )2

(s−s0)

. (20)

As θ is monotonically decreasing the same formula holds for all s in the domain where γ is
length minimizing provided only θ0 > 0.

�
Equation (20) clearly displays the influence of the Lapse N in the focussing of geodesics beyond

the natural focussing that comes out of the non-negativity of the Ricci curvature. Equation (20) can
serve, in particular, to obtain information on the relationship between volume growth of tubular
neighborhoods of a horizon and the growth of N from it.

III. APPLICATIONS TO ASYMPTOTICALLY FLAT STATIC SOLUTIONS WITH REGULAR
AND CONNECTED HORIZONS

In this section, we show that any asymptotically flat static solution with regular and connected
horizon must satisfy the Penrose inequality. This is proved in Sec. III E Separately, in Sec. III F,
we will prove that one such solution must satisfy the opposite Penrose inequality and that the
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horizon must be geometrically round. This will lead us into the verge of proving Theorem 1 which
is carried out in Sec. III G To achieve the inequalities some preliminary material is introduced in
Secs. III A − III D. In Sec. III A, we compute “the value of M” for the “congruence of geodesics
emanating perpendicularly to H” (note that g is singular on H) which we will be used crucially in the
other sections. Technically, we will elude the fact that g is singular on H by considering instead of H
suitable sequences {H
i } of two-surfaces approaching H as i → ∞. In this way, “the value of M over
H” will be defined as a limit. Similarly, we will defines(p) := distg(p, H ) := limi→∞ distg(p, H
i ).
In Sec. III A, we recall the notion of Asymptotic Flatness and introduce, following Ref. 3, a coordinate
system adapted to asymptotically flat static solutions that will be very useful later. In Sec. III C, we
introduce the notion of Coordinate-Distance Lag which is necessary to prove, in Theorem 2 of
Sec. III D, a central Distance Comparison where we establish a lower bound for the g-distance
function to the horizon (the function s) in terms of a certain function of N, m, and A (the function ˆ̂s).
For any divergent sequence of points {pi} the coordinate-distance lag associated with {pi} is defined
as δ̄({pi }) = lim sup s(pi ) − r (pi ) + 2m, where r = |x̄ | and {x̄ = (x1, x2, x3)} is the coordinate
system introduced in Sec. III B and it will be seen to be δ̄({pi }) = lim sup s(pi ) − ŝ(pi ). The
Penrose inequality in Sec. III E is then proved by showing first, using a standard comparison of
mean curvatures, that if P := A/(16πm) > 1 (i.e., the Penrose inequality does not hold), then there is
a divergent sequence whose coordinate-distance lag is non-negative (Corollary 2) and on the other
hand proving, using the distance comparison of Sec. III D, that if P > 1, then the coordinate-distance
lag must be negative for any divergent sequence (Proposition 12). This reaches a contradiction. To
prove the opposite Penrose inequality it is shown that the Gaussian curvature κ of H must satisfy
κ ≥ 4(4πm/A)2 to prevent a violation of the distance comparison near the horizon integrating this
inequality over H and using Gauss-Bonnet the opposite Penrose inequality is achieved. As a by-
product of both inequalities, one obtains that the horizon must be geometrically round, namely, that
κ = 4π /A.

A. The value of M over regular horizons

Let (�, g, ln N ) be a static solution and let H be a regular and connected horizon. Consider
an embedded (orientable) surface S ⊂ � \ H . Let n1 and n2 be the two unit-normal vector fields
to S. As we noted before if F is the congruence of geodesics emanating perpendicularly to S
and following one of the perpendicular directions to S, say n1, then the mean curvature θ of the
congruence F over S is equal to the mean curvature of the surface S in the direction of n1. Now to
define M over H (where g is singular) for the “congruence of geodesics emanating perpendicular to
H” we will calculate M over a suitable sequence of surfaces and then take the limit as the surfaces
approach H. Such calculation is performed in the paragraphs below. The following notation will be
used in this section and those that follow.

Notation 1: Let 
0 be a number sufficiently small in such a way that for any 
 ≤ 
0, 
 is a
regular value for the lapse N and the set H
 := {N = 
} is isotopic to H (note that |∇N| �= 0 over
a regular horizon H). One such 
0 will be called regular. For any two 
 < 
̄ denote by �
,
̄ the
closed region enclosed by H
 and H
̄ . The region enclosed by H
 and H will be denoted by �H,H


.

Let {
i }i=∞
i=1 be a sequence such that 
i ↓ 0 and 
i ≤ 
0 with 
0 as in Notation 1. Define

MH := lim

i →0

(
θ

2
a2 − a)N 2|H
i

.

The next proposition shows the limit above exists (so it is well defined) and is always constant over
H. Define |∇N|H = |∇N|g|H.

Proposition 4: Let (�, g, N) be a static solution with regular horizon ∂�. Let H be a connected
component of ∂�. Then, we have

MH = |∇N |H a2. (21)
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Proof: Denote (as we have done before) by θ the mean curvature of H
 with respect to g and
θg the mean curvature with respect to g. From the conformal relation g = N 2g we know that

θ = θg

N
+ 2

n(N )

N 2
,

where n(N) is the normal derivative of N in the outgoing direction (outgoing to ∂�H,H
i
and n a unit

vector with respect to g). Thus, we get

(
θ

2
a2 − a)N 2 = a2n(N ) + a2θg N

2
− aN 2.

We get Eq. (21) in the limit when 
i → 0. �
B. Asymptotically flat static solutions

We will use a useful characterization of asymptotically flat static solutions (�, g, ln N ) due
to Beig and Simon.3 Following Ref. 3, we say that (�, g, ln N ) is asymptotically flat iff there is a
coordinate system {x̄ = (x1, x2, x3) with x2

1 + x2
2 + x2

3 = |x̄ |2 ≥ |x̄ |20} outside a compact set in �

such that

1. ln N = O2( 1
|x̄ | ) and gi j − δi j = O2( 1

|x̄ |2 ); where we use the notation φ(x̄) = O2( f (|x̄ |)) to
mean that for some positive numbers c1, c2, and c3 we have

|φ| ≤ c1| f (|x̄ |)|, |∂iφ| ≤ c2|∂|x̄ | f (|x̄ |)| and |∂i∂ jφ| ≤ c3|∂2
|x̄ | f (|x̄ |)|.

2. The second derivatives of ln N and gi j − δi j have bounded Cα-norm (defined with respect to
the coordinate system {x̄}) bounded; namely, if φ = ∂k∂ lln N or φ = ∂k∂l(gi j − δi j ) for all
1 ≤ k, l, i, j ≤ 3, then

‖φ‖Cα = sup
|x̄−x̄ ′ |≤1

|φ(x̄) − φ(x̄ ′)|
|x̄ − x̄ ′|α < ∞.

Proposition 5 (Beig-Simon3): Let (�, g, ln N ) be an asymptotically flat static solution. Then,
there is a coordinate system {x̄ = (x1, x2, x3), |x̄ | ≥ |x̄ |1} (not necessarily equal to the one defining
asymptotic flatness), such that

ln N 2 = −2m

|x̄ | + O2(
1

|x̄ |3 ), (22)

gi j = δi j − m2

|x̄ |4 (δi j |x̄ |2 − xi x j ) + O2(
1

|x̄ |3 ), (23)

where |x̄ |2 = x2
1 + x2

2 + x2
3 and m is the ADM mass of the solution.

Note that the remainders are O2(1/|x̄ |3), in particular, ln N has zero dipole moment. This fact
will be important later. Note too that |x̄ |2d�2 = |x̄ |2(dθ2 + sin2 θdϕ2) = (δi j − (xi x j )/|x̄ |2)dxi dx j

therefore we have

g = δi j dxi dx j − m2d�2 + O2(
1

|x̄ |3 ) = (d|x̄ |)2 + (|x̄ |2 − m2)d�2 + O2(
1

|x̄ |3 ).

To make contact with the representation (5) of the Schwarzschild solution proceed as follows. Let
(|x̄ |, θ, ϕ) be the spherical coordinate system associated with the coordinate system {x̄}. Make the
change of variables (|x̄ |, θ, ϕ) → (r, θ, ϕ) with r = |x̄ | + m. Then, for the metric g, we obtain

g = dr2 + r2(1 − 2m

r
)d�2 + O2(

1

r3
) = gS + O2(

1

r3
).

Downloaded 19 Sep 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



012501-12 Martin Reiris J. Math. Phys. 53, 012501 (2012)

For the Lapse N instead, we obtain the following expansion. From (22) we have

N 2 = 1 − 2m

|x̄ | + 2m2

|x̄ |2 + O2(
1

|x̄ |3 ).

Now use

1

|x̄ | = 1

r − m
= 1

r
+ m

r2
+ m2

r3
+ O2(

1

r4
)

to get

N 2 = 1 − 2m

r
+ O2(

1

r3
).

We can thus rephrase Proposition 5 in the following form.

Proposition 6: Let (�, g, ln N ) be an asymptotically flat static solution. Then, there is a coordi-
nate system {x̄ = (x1, x2, x3), (x2

1 + x2
2 + x2

3 )
1
2 = r ≥ r1} (not necessarily equal to the one defining

asymptotic flatness), such that

N 2 = 1 − 2m

r
+ O2(

1

r3
), (24)

g = dr2 + r2(1 − 2m

r
)d�2 + O2(

1

r3
), (25)

where m is the ADM mass of the solution.

The following proposition on the asymptotic of the mean curvatures of the coordinate spheres
Sr = {p/r(p) = r} is now direct.

Proposition 7: Let (�, g, N) be an asymptotically flat static solution and consider a coordinate
system as in Proposition 6. Then, the mean curvature θ r of the level surfaces Sr = {p/r(p) = r}
satisfy, at every point in Sr, the estimate

θr = 2

r
+ 2m

r2
+ O(

1

r3
). (26)

C. The coordinate-distance lag

Let (�, g, ln N ) be an asymptotically flat static solution with regular and connected horizon H.
We would first like to introduce the distance function to H, the definition of which is more or less
evident. We will follow Notation 1.

Let p ∈ �\H and let {
i }i=∞
i=1 be a strictly decreasing sequence such that, 
i ≤ 
0, lim
i = 0,

and p /∈ �H1,H . We note that if j > i, then

dist(p, H
i ) < dist(p, H
 j ),

and we have

dist(p, H
i ) ≤ dist(p, H
 j ) ≤ dist(p, H
i ) + diam(�H
 j ,H
i
), (27)

where the diameter of �H
 j ,H
i
, diam(�H
 j ,H
i

), tends to zero as i(< j) → ∞. Denote s
(p)
:= dist(p, H
). The inequality (27) shows that

s(p) := lim
i→∞

s
i (p),

for any sequence {
i} as above, is well defined and independent on {
i}. We thus define the
distance from p to H in that way. Note that given a point p in �\H, one can always construct a length
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minimizing geodesic from p to H by taking the limit of length minimizing geodesics from p to H
i .
This fact will be used later without further mention.

Now consider the Schwarzschild solution ḡS = dr2 + (1 − 2m
r )r2d�2 and consider a ray γ (r)

= (r, θ0, ϕ0), r ∈ [2m, ∞), which is, naturally, length minimizing between any two of its points. Let
s(γ (r )) be the length of γ between r = 2m and r. Then s(γ (r )) = r − 2m and, therefore, the limit
limr→∞s(γ (r )) − r + 2m = 0. Now consider a ray γ (τ ) on an (another) asymptotically flat static
solution with regular and connected horizon H, joining H to infinity. Then in this different scenario,
instead, the limit lims(γ (τ )) − r(γ (τ )) + 2m may be different from zero. We advocate now to
define the coordinate distance lag measuring precisely this a priori mismatch.

Definition 2: Let (�, g, ln N ) be an asymptotically flat static solution with connected and regular
horizon. Let {x̄ = (x1, x2, x3), |x̄ | = r ≥ r1} be a coordinate system as in Proposition 6. Let {pi} be
a diverging sequence of points (i.e., s(pi) → ∞) (lying inside the range of {x̄}). Then, the coordinate
distance lag, δ̄, associated with the sequence {pi} is defined as

δ̄ = lim sup
i→∞

s(pi ) − r (pi ) + 2m.

Note that coordinate-distance lags are always zero in the Schwarzschild solution. From the next
proposition it will follow that coordinate-distance lags are always finite.

Proposition 8: Let (�, g, ln N ) be an asymptotically flat static solution with connected and
regular horizon H. Let {x̄ = (x1, x2, x3), |x̄ | = r ≥ r1} be a coordinate system as in Proposition
6. Then there are finite c1 > c2, depending on (�, g, ln N ), with the following property: for every
divergent sequence of points {pi} (lying inside the range of {x̄}) we have

s(pi ) − c2 ≤ r (pi ) ≤ s(pi ) − c1. (28)

Proof: We start showing the first inequality in Eq. (28). Let us first consider r2 such that for
every x̄ such that r(|x|) ≥ r2 and a tangent vector v at x̄ we have

|R(v, v)|
|gS(v, v)| ≤ R0

r3
≤ 1,

where R is the remainder tensor R := g − gS , gS is the Schwarzschild metric (5) and R0 is a positive
constant. It is clear that we do not lose anything in assuming that r2 = r1.

Let d0 = supq∈Sr2
{dist(q, H )} and for each i ≥ 0 consider the curve α(r) = (r, θ (pi)), ϕ(pi))

starting at Sr2 and ending at pi (namely, the range of r is [r2, r(pi)]. We will make use of the inequality
√

1 + x ≤ 1 + |x |, if |x | < 1, (29)

to estimate the distance s(pi ) from above. We have

s(pi ) ≤ d0 +
∫ r (pi )

r2

√
gS(α′, α′) + R(α′, α′)dr. (30)

As the integration is on [r2, r(pi)] we have, by the definition of r2, |R(α′, α′)|/|gS(α′, α′)| ≤ R0/r3

≤ 1 (note that α′ = ∂r). Thus by inequality (29) we have

√
gS(α′, α′) + R(α′, α′) ≤

√
g(α′, α′) + R0

r3
.

Putting this into Eq. (30) and integrating we have

s(pi ) ≤ r (pi ) + (d0 + R0

2r2
2

− r2).

This proves the first inequality.
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To show the second inequality on the right-hand side of Eq. (28) we proceed as follows. Consider
now an arbitrary curve α(τ ) joining Sr2 to pi, lying inside the region enclosed by Sr2 and Sr (pi ) and
parameterized by the arc length, with respect to gS , τ . Then, for the length of α, l(α), we have

l(α) =
∫ √

gS(α′, α′) + R(α′, α′)dτ.

We are going to make use of the inequality

1 − |x | ≤ √
1 + x, if |x | ≤ 1. (31)

Note that because gS(α′, α′) = 1 we have |R(α′, α′)| ≤ R0/r3. Therefore, from the inequality (31)
we have

l(α) ≥
∫

(1 − R0

r3
)dτ. (32)

Now note that |dr/dτ | ≤ 1. To see this consider an arbitrary parameterization of α by, say t. Then
dτ/dt = √

gS(∂tα, ∂tα) ≥ |dr/dt |. Thus, noting that the integrand in Eq. (32) is positive, we can
write

l(α) ≥
∫

(1 − R0

r3
)dτ ≥

∫
(1 − R0

r3
)| dr

dτ
|dτ ≥

∫
(1 − R0

r3
)
dr

dτ
dτ.

Integrating we get

l(α) ≥ ri − r2 − R0

2r2
2

. (33)

Now clearly we have s(pi ) is greater or equal than the infimum of the lengths of all the curves α

joining pi to Sr2 and lying inside the region enclosed by Sr2 and Sr (pi ). By the estimation in Eq. (33)
above we have thus

s(pi ) ≥ r (pi ) − (r2 + R0

2r2
),

which proves the inequality on the right-hand side of Eq. (28). �
Corollary 1: Let (�, g, ln N ) be an asymptotically flat static solution with connected and regular

horizon H. Let {x̄ = (x1, x2, x3), |x̄ | = r ≥ r1} be a coordinate system as in Proposition 6. There
are c1 > c2 depending on (�, g, ln N ) with the following property: for every diverging sequence of
points {pi} (lying inside the range of {x̄}) we have

c2 ≤ δ̄({pi }) ≤ c1.

D. Distance comparison

Consider an asymptotically flat static solution with regular and connected horizon, (�, g, ln N ).
Let s(p) = dist(p, H ). If the solution (�, g, ln N ) were the Schwarzschild solution, then we would
have

s(p) = r (p) − 2m = 2m

1 − N (p)2
− 2m.

As it turns out, given an arbitrary solution (�, g, ln N ), the function ŝ defined exactly by

ŝ(p) := 2m

1 − N (p)2
− 2m
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provides, via a comparison of Laplacians, a lower bound for the distance function s. The next
proposition computes the expression of the Laplacian of ŝ.

Proposition 9: Let (�, g, ln N ) be a static solution of the Einstein equations. Then, the Laplacian
of ŝ has the following expression:

�ŝ = 2

s̄ + 2m
(1 + m

(ŝ + 2m)N 2
)|∇ŝ|2. (34)

Proof: Note first the identities

ŝ = 2m
N 2

1 − N 2
, (35)

N 2 = ŝ

ŝ + 2m
, N 2 + 1 = 2

ŝ + m

ŝ + 2m
. (36)

We calculate

∇ 1

1 − N 2
= 2

N∇N

(1 − N 2)2
= 2

N 2

(1 − N 2)2
∇ ln N .

Next, we compute the divergence of this expression to get

�
1

1 − N 2
= 4

|∇N |2
(1 − N 2)2

+ 8
N 2|∇N |2
(1 − N 2)3

= 4
|∇N |2

(1 − N 2)3
(1 + N 2),

where we have used the fact that �ln N = 0. This expression is equal to

�
1

1 − N 2
= |∇ 1

1 − N 2
|2(1 + N 2)(

1 − N 2

N 2
).

After inserting back the coefficient 2m and using the identity (35) we get

�ŝ = 1 + N 2

ŝ
|∇ŝ|2.

Finally, using the identity (36) we have

N 2 + 1

ŝ
= 2

ŝ + m

ŝ + 2m

1

ŝ
= 2

ŝ + 2m
(1 + m

(ŝ + 2m)N 2
).

�
The asymptotic behavior of ŝ(p), when r(p) → ∞ is deduced from Proposition 6 and we have

ŝ(p) = 2m
2m

r (p) + O( 1
r (p)3 )

− 2m = r (p) − 2m + O(
1

r (p)
), (37)

if r(p) is big enough. This asymptotic expression will be important and will be used many times
later.

The reason why we have expressed the Laplacian of ŝ in the form (34) was to make it comparable
with the Laplacian of s, that satisfies the inequality

�s ≤ 2

s + 2Pm
(1 + Pm

(s + 2Pm)N 2
)|∇s|2 (38)

in a certain barer sense as is explained in Proposition 10. In the above equation P is equal to the
expression

P = A

16πm2
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and will be called the Penrose quotient. Note that the Penrose inequality A ≤ 16πm2 holds iff
P ≤ 1. Note too that wherever s is smooth we have |∇s|2 = 1. We have included such factor in (38)
to make the comparison to (34) more evident.

The fact that the inequality (38) holds in a barer sense will allow us to assume, when comparing
s to ŝ, that s is a smooth function. This fact will be further explained in Theorem 2. We now
introduce a proposition describing the sense in which inequality (38) holds.

Proposition 10: Let (�, g, ln N ) be an asymptotically flat static solution with regular and con-
nected horizon. Let {pi }i=∞

i=1 be a sequence of points in � converging to p in �\H. Let {
i }i=∞
i=1 be a

sequence such that limi → 0
i ↓ 0, 
1 ≤ 
0 with 
0 regular (Notation 1) and {pi , i = 1, . . . , i
= ∞} ⊂ � \ �H,H
0

. Consider the sequence of distance functions {s
i (p) = dist(p, H
i )}i=∞
i=1 .

Then, there is sequence of continuous functions s̃
i such that for each 
i:

1. s̃
i is defined on the domain � \ �H,H
i
,

2. s̃
i is smooth at pi,
3. s̃
i ≥ s
i , s̃
i (pi ) = s
i (pi ) and |∇s̃|2(pi ) = 1,
4.

�s̃
i (pi ) ≤ 2
1

s̃
i (pi ) + ãi
(1 + ãi

2(s̃
i (pi ) + ãi )N 2(pi )
)|∇s̃
i |2(pi ),

where {ãi } is a sequence such that limi→∞ ãi = 2m P.
5. Moreover, {s̃
i } converges uniformly in C0 to s(p) = dist(p, H ) in the sense that

lim
i→∞

sup
q∈�\�H,H
i

|s̃
i (q) − s(q)| = 0.

The proof of this proposition will be a direct consequence of the following proposition in Riemannian
geometry. We will use the following notation and terminology.

Notation 2: Let (�, g) be a complete Riemannian manifold with non-empty and connected
boundary ∂�. The inner-normal bundle N (∂�) of � at ∂� is defined as the set of vectors v(q),
normal to ∂� at q, and pointing inwards to �. We will consider the exponential map exp : N (∂�) →
� such that to every v(q) ∈ N (∂�) assigns the end point of the geodesic segment of length |v(q)|
that start at q with velocity v(q)/|v(q)|.

Proposition 11: Let (�, g) be a complete Riemannian three-manifold, not necessarily compact.
Let S1 be an immersed smooth surface separating � into two connected (open) components �1 and
�2. Let p be a point in �1 and γ q, p be a geodesic segment minimizing the distance between p and
∂�1 = S1, starting at q ∈ ∂�1 and ending at p. We can write γ q, p(τ ) = exp(τv(q)), τ ∈ [0, 1], with
v(q) = l(γ q, p)n(q) where n(q) is the inward unit-normal vector to ∂�1 at q. If the differential of
the exponential map exp : N (∂�1) → �1 is not injective at v(q), then for every smooth surface S2

immersed in �1 ∪ S1 such that

1. S2 touches S1 only at q.
2. The second fundamental forms �1(q) and �2(q) of S1 and S2 (respectively) at q and defined

with respect to n(q) satisfy

�2(q) > �1(q),

we have

1. γ q, p is the only geodesic segment minimizing the distance between p and S2.
2. The exponential map exp : N (∂�̃1) → �̃1 is injective at v(q), where �̃1 is the connected

component of � \ S2 containing S1.

Proof: First, it is clear that γ p, q is the only geodesic segment minimizing the distance between
p and S2 for S2 touches S1 only at q. This proves the first item of the claim.
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To prove the second suppose on the contrary that the exponential map exp : N (∂�̃1) → �̃1 is
not injective at v(q). Then there is a curve w(λ), λ∈ [0, λ1] of vectors inN (�̃) of norm (for all λ) equal
to l(γ p, q), such that w(0) = v(q) and such that d exp(w′(0)) = 0. Therefore, J (s) = d exp( s

l(γp,q )w
′(0)

is a Jacobi field such that J(s) �= 0 for any s ∈ [0, l(γ p, q)). Let α(s, λ), (s, λ) ∈ [0, l(γ p, q)] × [0, λ1] be
a smooth one-parameter family of curves such that ∂λα(s, 0) = J(s) and such that ∂sα(0, λ) ∈ N (�̃1).
Then because J(s) is a Jacobi field we have that the second variation of the length of the curves αλ(s)
= α(s, λ) (variation with respect to λ) is equal to zero (although it is a standard fact in Riemannian
geometry, the reader can check this fact in pp. 227–228 of Ref. 12, the proof there is for Jacobi
fields vanishing at the two extreme points, but it is simply adapted to this situation as well). On the
other hand consider the curves ᾱ(s, λ) = α(s, λ), with (s, λ) ∈ [0, s(λ)] × [0, l(γ p, q)] where the
point α(s(λ), λ) is the intersection of α(s, λ) (a curve as a function of s) and S1. Now, because of
the condition in item 2, �2(q) > �1(q), the second variation (with respect to λ) of ᾱ is positive.
Thus, the second variation (with respect to λ) of the length of the curves α̃(s, λ) = α(s, λ), (s, λ) ∈
[s(λ), l(γ p, q)] × [0, λ1] is negative, which is a contradiction as γ p, q is length minimizing between
p and S1. �

Proof (of Proposition 10): Let γpi ,qi , qi ∈ H
i be a length minimizing geodesic joining pi and
H
i . Suppose first that s
i is smooth at pi for each i. Then, we claim that taking s̃
i = s
i is enough.
It is clear that the items 1,2,3, and 5 of the claim are satisfied with this choice. We need, therefore, to
check that there is sequence ãi for which the equation in item 4 is satisfied and limi→∞ ãi = 2m P .
For this, we are going to use the monotonicity, for every a of M = Ma an over γpi ,qi , and then we
will chose a conveniently (which will be our choice of ãi ). Of course M is defined, for each i, for
the congruences Fi of length minimizing geodesics segments to H
i . Thus, we have

θ (pi )

2
(s
i (pi ) + a)2 N 2(pi ) − (s
i (pi ) + a)N 2(pi ) = Ma(pi ) ≤ Ma(qi ).

Solving for θ (pi ) = �s
i (pi ) we get

�s
i (pi ) ≤ 2

(s
i (pi ) + a)
(1 + M
i (qi )

(s
i (pi ) + a)N 2(pi )
).

We need now to show that we can chose a for each i (thus having a = ãi ) in such a way that
M
i (qi ) ≤ ãi/2. Therefore, we need to have

M
i (qi ) = θ
i (qi )

2
a2 N 2(qi ) − aN (qi )

2 ≤ a

2
.

Thus we chose

a = sup
q∈H
i

{2( 1
2 + N (q)2)

θ (q)N 2(q)
}. (39)

Now, the numerator tends to one and the denominator, because of Eq. (21), tends to 2|∇N|H
= 8πm/A = 1/(2mP). The claim in this case follows.

If on the contrary, the functions s
i are not smooth at pi, then we know by Proposition 11 that
the distance functions s̃
i to a hypersurface H̃
i included in �H,H
i

will be smooth at pi provided
they touch H
i only at qi and have strictly greater second fundamental form at qi. Besides these
last two conditions nothing else is required on the hypersurfaces H̃
i for s̃
i to be smooth at pi.
Thus, it is clear that if we chose the hypersurfaces H̃
i close enough to H
i (but satisfying the two
requirements) and ãi using the same formula as in Eq. (39) (but with q varying on H̃
i ), then s̃
i

will satisfy items 1–5 of the claim. �
Theorem 2 (Distance comparison): Let (�, g, ln N ) be an asymptotically flat static solution

with regular and connected horizon. Then, we have

2m

1 − N 2(p)
− 2m = ŝ(p) ≤ max{1,

1

P
}s(p) = max{1,

16πm2

A
}dist(p, H ), (40)
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for all p in �, where P is the Penrose quotient. Moreover,

lim
s(p)→∞

ŝ(p)

s(p)
= 1 and lim

s(p)→0

ŝ(p)

s(p)
= 1

P
.

Proof: We will consider the quotient ŝ/s as a function on �\H. Let us first find the boundary
conditions, namely, lim ŝ(p)/s(p) when s(p) → ∞ and s(p) → 0 (at infinity and at the horizon,
respectively). From Proposition 8 and the estimation (37), we deduce

lim
s(p)→∞

ŝ(p)

s(p)
= 1.

To calculate the quotient at the horizon we proceed like this. Consider the congruence of geodesics
with respect to g, emanating perpendicularly to H and parameterized by the arc length τ which is
measured from the initial point of the geodesic at H. Any given coordinate system {x̄ = (x1, x2)} on
an open set of H can be propagated along the congruence to the level sets of the distance function
with respect to g, namely, the τ 0-level sets {τ = τ 0} and we can write

g = dτ 2 + hi j (x̄, τ )dxi dx j

and

ŝ(τ, x̄) = 2m

1 − N 2(τ, x̄)
− 2m = 2m|∇N |2Hτ 2 + O(τ 3). (41)

We note then that because H is totally geodesic, the second fundamental form is zero and we have

∂τ hi j (τ, x̄)

∣∣∣∣
τ=0

= 0.

Thus
g = dτ 2 + hi j (0, x̄)dxi dx j + O(τ 2). (42)

Combining (41) and (42), we get

g = N 2g = |∇N |2Hτ 2(dτ 2 + hi j (0, x̄)dxi dx j ) + O(τ 3)dτ 2 + O(τ 4)hi j dxi dx j .

From this expression it is simple that if {pi} is a sequence in �\H converging to a point in H we
have

s(pi ) = |∇N |H
τ (pi )2

2
+ O(τ (pi )

3). (43)

We can combine (41) and (43) to conclude that for any sequence {pi} in �\H converging to a point
in H we have

lim
ŝ(pi )

s(pi )
= 4m|∇N |H . (44)

Now, |∇N|H is equal to 4πm/A as can be seen by integrating �N = 0 between Sr = {p/r(p) = r}
and H and taking the limit when r → ∞. With this value of |∇N|H we get from (44),

lim
s(p)→0

ŝ(p)

s(p)
= 16πm2

A
= 1

P
.

We would now like to compare ŝ to s using (34) and (38). For this purpose, it is simpler to
consider the dimensionless quantities û = ŝ/2m and u = s/2m P . In terms of them (34) and (38)
become

�û = 2

û + 1
(1 + 1

2(û + 1)N 2
)|∇û|2, (45)

�u ≤ 2

u + 1
(1 + 1

2(u + 1)N 2
)|∇u|2. (46)
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We will consider now the quotient φ = û/u and note that the boundary conditions at H and at
infinity become, respectively, lims(p)→0 û(p)/u(p) = 1 and lims(p)→∞ û(p)/u(p) = P . If we prove
that û/u ≤ max{1, P}, then we will be proving (40). Thus, we will proceed by contradiction and
assume that there is a point p̄ ∈ � \ H such that û( p̄) > max{1, P}u( p̄) and that such point is an
absolute maximum for û/u (note the boundary conditions). We will assume below that the function
s is smooth at p̄ or equivalently that u is smooth at p̄. Otherwise use the fact that s satisfies Eq. (38)
in a barer sense as follows. Replace s by s
 for 
 sufficiently small in such a way that û/u
 ,
with u
 = s
/2m P still has a maximum greater than max {1, P}, say at ¯̄p. Then substitute once
more s
 by s̃
 ≥ s
 as in Proposition 10 and consider thus the quotient û/ũ
 , with ũ
 = s̃
/2m P ,
which still has a maximum greater than max {1, P} at ¯̄p. If 
 is sufficiently small we would reach a
contradiction following the same argument as below.

We compute

�
û

u
= �û

u
− 2

< ∇û,∇u >

u2
− û

u2
�u + 2

û

u3
|∇u|2. (47)

Because û/u reaches an absolute maximum at p̄ we have ∇(û/u| p̄) = 0 and thus

∇û

û

∣∣∣∣
p̄

= ∇u

u

∣∣∣∣
p̄

, (48)

with |∇u|2( p̄) = 1/2m P �= 0. If we use (48) in (47), we note that the second and fourth terms on
the right-hand side cancel out at p̄. Thus, we will get a contradiction of the fact that û/u reaches an
absolute maximum at p̄ if we can prove that the sum of the first and third terms on the right-hand
side of (47) is positive at p̄ (the Maximum Principle). We will prove that in what follows.

We compute

�
û

u

∣∣∣∣
p̄

= 1

u2( p̄)
(u�û − û�u)

∣∣∣∣
p̄

and using (45) and (46), we get the inequality

�
û

u

∣∣∣∣
p̄

≥ 2

u2
(

u

(1 + û)
(1 + 1

2(1 + û)N 2
))

û2

u2
|∇u|2 − û

(1 + u)
(1 + 1

2(1 + u)N 2
)|∇u|2)

∣∣∣∣
p̄

.

Thus, we would like to prove that

û

1 + û
(1 + 1

2(1 + û)N 2
)

∣∣∣∣
p̄

>
u

1 + u
(1 + 1

2(1 + u)N 2
)

∣∣∣∣
p̄

. (49)

Recalling from (36) that N 2 = û/(1 + û) and substituting that into (49) we deduce that we would
like to show that

û

(1 + û)
(1 + 1

2û
)

∣∣∣∣
p̄

>
u

1 + u
(1 + 1 + û

2(1 + u)û
)

∣∣∣∣
p̄

.

We will arrange now this equation in a different form. To this, right hand term u/(1 + u) is moved
to the left-hand side, while the left hand term 1/(2(1 + û)) is moved to the right-hand side. In this
way, we obtain a new inequality where the left-hand side is

û

1 + û
− u

1 + u

∣∣∣∣
p̄

= û − u

(1 + u)(1 + û)

∣∣∣∣
p̄

and where the right-hand side is

u(1 + û)

2û(1 + u)2
− 1

2(1 + û)

∣∣∣∣
p̄

= 1

2û(1 + û)(1 + u)2
(u(1 + û)2 − û(1 + u)2)

∣∣∣∣
p̄

.

This last expression can be further arranged into

1

2û(1 + û)(1 + u)2
(û − u)(ûu − 1)

∣∣∣∣
p̄

.

Downloaded 19 Sep 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



012501-20 Martin Reiris J. Math. Phys. 53, 012501 (2012)

Thus combining the results on the left and right hands we conclude that we would like the inequality

û − u

(1 + u)(1 + û)

∣∣∣∣
p̄

>
1

2û(1 + û)(1 + u)2
(û − u)(ûu − 1)

∣∣∣∣
p̄

to be satisfied. Thus we would like to have

2(û − u)û(1 + u)

∣∣∣∣
p̄

> (û − u)(ûu − 1)

∣∣∣∣
p̄

,

but because we are assuming û( p̄) > max{1, P}u( p̄) ≥ u( p̄) the inequality above is clearly
satisfied. �
E. The Penrose inequality

In this section, we will prove the Penrose inequality for asymptotically flat static solutions with
regular and connected horizon. We start by observing and interesting corollary to Theorem 2.

Corollary 2 (To Theorem 2): Let (�, g, ln N ) be an asymptotically flat static solution with
connected and regular horizon. Suppose that the Penrose inequality does not hold, namely, assume
that the Penrose quotient P = A

16πm2 is greater than one. Then, for any divergent sequence of points
{pi}, the associated coordinate-distance lag is greater or equal than zero, namely, δ̄({pi }) ≥ 0.

Proof: If P > 1, then max{1, 1
P } = 1 and from Theorem 2 we have then

ŝ(p) = 2m

1 − N 2(p)
− 2m ≤ s(p), for all p ∈ �.

Evaluating this inequality at {pi} and using the asymptotic of ŝ described in Eq. (37) we get

0 ≤ s(pi ) − r (pi ) + 2m + O(
1

r (pi )
).

Therefore,

0 ≤ lim sup
i→∞

s(pi ) − r (pi ) + 2m = δ̄({pi })

as desired. �
The following proposition, however, shows (in particular) that if the Penrose inequality does

not hold, then there is a divergent sequence {pi} whose coordinate-distance lag is negative, namely,
δ̄({pi }) < 0. The two results thus show the Penrose inequality on asymptotically flat static solutions
with regular and connected horizon.

Proposition 12: Let (�, g, ln N ) be an asymptotically flat static solution with regular and
connected horizon H. Then, there is a divergent sequence {pi} such that

δ̄({pi }) ≤ m(1 − P).

In particular if P > 1, then δ̄({pi }) < 0.

Proof: Let {
i }i=∞
i=1 be a sequence such that 
i ↓ 0 (with 
1 ≤ 
0 and 
0 regular as in Notation 1),

and let {ri }i=∞
i=1 be a sequence such that ri↑∞ (and r1 as in Proposition 6). Consider the congruence

of length minimizing geodesics F emanating perpendicularly to H
i . The geodesic segment, γ i,
minimizing the length between H
i and Sri is clearly in F . Let pi be the point of γ i at Sri , let qi be the
initial point at H
i , and let v(qi) be the (unit) velocity of γ i at qi. γ i is naturally perpendicular to Sri at
pi and to H
i at qi. Consider now the exponential map exp : Ni → �, where Ni is the inner-normal
bundle of � \ �H,H
i

at H
i as in Notation 2. Assume that the differential of the exponential map is
smooth at the point l(γ i)v(qi) in Ni , if not, work instead with a suitable function s̃
i as in Proposition
10. Note that, in the notation of Proposition 10, we have l(γi ) = s
i (pi ). Then, there is εi such that
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the surface defined by S̄i = {exp(l(γi )v(q)), q ∈ BH
i
(qi , εi )} is smooth. Moreover, S̄i is tangent to

Sri at pi, its mean curvature is equal to the mean curvature θ of F restricted to it and, because γ i is
length minimizing between Sri and H
i , it lies inside the region enclosed by H
i and Sri . Therefore,
from the standard comparison of mean curvatures we have

θ (pi ) ≥ θri (pi ),

where θri is the mean curvature of Sri . Consider now M with a = A/8πm and over γ i. As M is
monotonic we have

θ (pi ) ≤ 2

s
i + A
8πm

+ 2M(qi )

(s
i + A
8πm )2 N 2(pi )

.

Now, to use this equation we need several facts. First, from Proposition 7 we have θri = 2/ri

+ 2m/(r2
i ) + O(1/r3

i ). Therefore, we have

2

ri
+ 2m

ri (ri − 2m)
+ O(1/r3

i ) ≤ 2

s
i + A
8πm

+ 2M(qi )

(s
i + A
8πm )2 N 2(pi )

. (50)

We can arrange this better as

2(s
i + A
8πm − ri )

ri (s
i + A
8πm )

+ 2m

ri (ri − 2m)
− 2M(qi )

(s
i + A
8πm )2 N 2(pi )

≤ O(1/r3
i ). (51)

Second, from Proposition (21) we have limM(qi ) = |∇N |H ( A
8πm )2 = A

16πm . Finally, we have
lim s(pi ) − s
i (pi ) = 0 and from Proposition 8 it is lim ri/s
i = 1. Multiplying Eq. (51) by s2


i
,

taking the limsup while using the facts described above gives finally

δ̄({pi }) = lim sup s(pi ) − ri + 2m ≤ m(1 − P)

as desired. �
Using Corollary 2 and Proposition 12 we deduce the Penrose inequality.

Proposition 13 (The Penrose inequality): Let (�, g, N) be an asymptotically flat static solution
with a regular and connected horizon H. Let A be the area of H and m be the ADM mass of the
solution. Then

A ≤ 16πm2. (52)

F. The opposite Penrose inequality

In this section, we prove the opposite Penrose inequality, namely, that A ≥ 16πm2. The proof
will follow after carefully studying the behavior of the quotient ŝ/s at the singularity of g, namely,
the (unique) horizon H, and using then the distance comparison in Theorem 2. We will denote by κ

the Gaussian curvature of the two-metric on H inherited from g.

Proposition 14: Let (�, g, N) be an asymptotically flat static solution with regular and connected
horizon. Consider a g-geodesic γ starting perpendicularly from H at q, and parameterized with
respect to the g-arc length of γ from q, τ . Define ˆ̂s(γ (τ )) = ∫ τ

0 N (γ (τ ))dτ . Then, we have

d

d ˆ̂s

ŝ
ˆ̂s

∣∣∣∣
q

= 8m(
4πm

A
)2 − 2mκ

∣∣∣∣
q

. (53)

Proof: Note that, as is written in the statement of the proposition, we will work in the natural
representation (�, g, N) of the static solution.
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Now first we note that d ˆ̂s(τ )/dτ = N (α(τ )). Derivatives with respect to τ will be denoted by a
prima, i.e., f ′(α(τ ))′ = df(α(τ ))/dτ . We compute (when τ �= 0)

d

d ˆ̂s

ŝ
ˆ̂s

=
2m((2 N ′

1−N 2 + 2 N 2 N ′
(1−N 2)2 ) ˆ̂s − 2m N 2

(1−N 2) )

ˆ̂s2
. (54)

We want to calculate now the limit of this expression when τ → 0. We will separate the right-hand
side of (54) into two terms and calculate the limit for each one of them separately. The first limit we
will calculate is

lim
τ→0

4m N 2 N ′

(1 − N 2)2 ˆ̂s
= 4m|∇N |H lim

τ→0

N 2

ˆ̂s
, (55)

which arises from the middle term on the right-hand side of Eq. (54). The right-hand side of (55)
was obtained using that N′(τ ) → |∇N|H and (1 − N2)2 → 1. We calculate now the limit on the
right-hand side of (55) using L’Hôpital rule and we have

lim
τ→0

N 2

ˆ̂s
= lim

τ→0
2N ′ = 2|∇N |H .

Thus we get

lim
τ→0

4m N 2 N ′

(1 − N 2)2 ˆ̂s
= 8m(|∇N |2H ) = 8m(

4πm

A
)2. (56)

The second limit that we will calculate is

lim
τ→0

2m

1 − N 2

(2N ′ ˆ̂s − N 2)
ˆ̂s2

= 2m lim
τ→0

(2N ′ ˆ̂s − N 2)
ˆ̂s2

, (57)

which arises from the combination of the first and third terms on the right-hand side of (54). Again,
to obtain the right-hand side of (57), we use the fact that the factor 2m/(1 − N2) would be, in the
limit, 2m. We calculate the limit on the right-hand side of (57) by L’Hôpital rule and obtain

2m lim
τ→0

(2N ′ − 2N ′ + 2ˆ̂s N ′′
N )

2 ˆ̂s
= 2m Ric(n, n), (58)

where n = α′(0) is the outward g-unit normal vector to H at α(0). To obtain the right-hand side
above we used the static equation (2), namely, N′′(α(0)) = Ric(α′(0), α′(0))N(α(0)) (note that α(τ )
is a g-geodesic).

Recall now the structure equation 2κ(q) + |�|2(q) − θ2(q) = R(q) − 2Ric(n(q), n(q)), where
q is a point in H. Again, n is the outward g-unit normal vector to H at q. �(q) and θ (q) are the
second fundamental forms of H, calculated using g, and evaluated at q. For a regular horizon we
know that � = 0, θ = 0. R and Ric are the scalar and Ricci curvatures of g, respectively. For a static
solution (�, g, N) it is R = 0 everywhere. κ , as said above is the Gaussian curvature of H with the
two-metric inherited from g. Thus, from the structure equation we get that for all q in H we have
κ(q) = − Ric(n, n). Using this fact in (58) and combining (58) and (56) to complete the limit (54),
we obtain (53). �

Proposition 15: Let (�, g, N ) be an asymptotically flat static solution with regular and connected
horizon. If there is a point q at H for which

κ(q) < 4(
4πm

A
)2, (59)

then there is a point p in �\H such that ŝ(p)/s(p) > 1/P , where P is the Penrose quotient.

Proof: Suppose there is a point q in H for which inequality (59) hods. By Proposition 14, there
is a g-geodesic emanating perpendicularly to H for which

d

d ˆ̂s

ŝ
ˆ̂s

> 0.
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Also applying L’hôpital rule we get

lim
τ→0

ŝ
ˆ̂s

= lim
τ→0

4m N N ′
(1−N 2)2

N
= 4m|∇N |H = 1

P
.

Therefore, we have ŝ(γ (τ ))/ ˆ̂s(γ (τ )) > 1/P for τ small. Now we observe that ˆ̂s(γ (τ )) ≥ s(γ (τ ))
because s is the g-distance function to H and ˆ̂s(γ (τ )) is the g-length of γ between γ (0) and γ (τ ).
Thus, for τ small we have

ŝ(γ (τ ))

s(γ (τ ))
= ŝ(γ (τ ))

ˆ̂s(γ (τ ))

ˆ̂s(γ (τ ))

s(γ (τ ))
≥ ŝ(γ (τ ))

ˆ̂s(γ (τ ))
>

1

P
.

�
Corollary 3: Let (�, g, N) be an asymptotically flat static solution with regular and connected

horizon H. Then, H is homeomorphic to a two-sphere and the inverse Penrose inequality holds, A
≥ 16πm2. Moreover, if the Penrose inequality holds, namely, A ≤ 16πm2, then κ = 4π /A and the
horizon is round.

Proof: By Proposition 15 if there is a point q in H for which κ(q) < 4(4πm/A)2, then there is
point p in �\H such that ŝ(p)/s(p) > 1/P but this contradicts the distance comparison of Theorem
2. Therefore, κ ≥ 4(4πm/A)2 and, by Gauss-Bonnet, H must be homeomorphic to a two sphere.
Moreover, ∫

H
κd A = 4π ≥ 4(

4πm

A
)2.

Thus

A ≥ 16πm2,

which finishes the first part of the claim. Suppose now that A ≤ 16πm2 then, as κ ≥ 4(4πm/A)2 we
must have k = 4(4πm/A)2 = 4π /A which finishes the claim. �

G. The uniqueness of the Schwarzschild solution

1. Further properties of the coordinate-distance lag

The proof of the uniqueness of the Schwarzschild solutions does not follow directly in our
setting from the equality A = 16πm2. Indeed it is required first to prove that for any divergence
sequence {pi} the associated coordinate-distance lag δ̄({pi }) is zero. We advocate now to prove this
intermediate step. We need two preliminary propositions. We start showing that |∇ŝ| ≤ 1.

Proposition 16: Let (�, g, ln N ) be an asymptotically flat static solution with regular and
connected horizon. Then, |∇ŝ|g ≤ 1.

Proof: We observe first that lims(p)→∞ |∇ŝ|g(p) = 1. But we also have lims(p)→0 |∇ŝ|g = 1. To
see this last claim we compute

|∇ŝ|g(p) = 4m

(1 − N 2(p))2
|∇N (p)|g → 4m|∇N |H .

But we already know from Corollary 3 that P = 1 and thus |∇N|H = 4πm/A = 1/4m. The claim
follows.

We show now that there cannot exist a point p in �\H for which |∇ŝ|(p) > 1. We will assume
without loss of generality that m = 1. The assumption simplifies the writing. Define

ŝα = 1

1 − N 2α
− 1
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and thus

N 2α = ŝα

ŝα + 1
.

Then, we compute

2αN 2α−1∇N = 1

(ŝα + 1)2
∇ŝα

and thus

∇N

N
= 1

2αŝα(ŝα + 1)
∇ŝα.

But �ln N = 0 and then ∇(1/(ŝα(ŝα + 1))∇ŝα) = 0 which can be written as

�ŝα = 2ŝα + 1

ŝα(ŝα + 1)
|∇ŝα|2. (60)

The interesting thing about this expression is that it does not depend explicitly on α. We note too
that we have

<
∇N

N
,∇ŝα >= 1

2αŝα(ŝα + 1)
|∇ŝα|2. (61)

The crucial and obvious observation about the family {ŝα} is that given any open set � of compact
closure �̄ ⊂ � \ H then ŝα converges uniformly in C2 to s over �̄ as α → 1. Thus it follows from
the limits of s at H and infinity observed at the beginning that if max{|∇s|(q), q ∈ �} > 1, then
there is an ε > 0 such that for every α with |α − 1| < ε the function |∇ŝα| posses at least one local
maximum greater than one. For a given α we will denote by pα a point at which a local maximum
of ŝα greater than one takes place.

We will use Weitzenböck’s formula

1

2
�|∇ŝα|2 = |∇∇ŝα|2+ < ∇�ŝα,∇ŝα > +2 <

∇N

N
,∇ŝα >2, (62)

and we will use it evaluated at pα . We note first that for every vector w ∈ Tpα
� we have

< ∇w∇ŝα,∇ŝα >= 0. Because of this we have |∇∇ŝα|2 = |∇∇ŝα|2Tpα � = |∇∇ŝα|∇ŝα(pα )⊥ where

∇ŝα(pα)⊥ is the perpendicular subspace to ∇ŝα in Tpα
�. Thus, we have

|∇∇ŝα|2(pα) ≥ 1

2
tr∇ŝα(pα )⊥∇∇ŝα = 1

2
�ŝα(pα).

This expression will be used in the first term on the right-hand side of Eq. (62). For the second
instead we note from Eq. (60) that

∇�ŝα

∣∣∣∣
pα

= −(
1

ŝ2
α

+ 1

(ŝα + 1)2
)|∇ŝα|2

∣∣∣∣
pα

.

For the third term on the right-hand side of Eq. (62), we will use Eq. (61). All together gives for
Eq. (62) the expression

0 ≥ 1

2
�|∇ŝα|2

∣∣∣∣
pα

≥ |∇ŝα|2(
(2ŝα + 1)2

2(ŝ2
α(ŝα + 1)2

− ŝ2
α + (ŝα + 1)2

ŝ2
α(ŝα + 1)2

+ 2

4α2

1

ŝ2
α(ŝα + 1)2

)

∣∣∣∣
pα

.

Further expanding the term in parenthesis we obtain

0 ≥ 1

2
�|∇ŝα|2

∣∣∣∣
pα

≥ |∇ŝα|2
2ŝ2

α(ŝα + 1)2
(−1 + 1

α
)

∣∣∣∣
pα

.
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Choosing α such that 1 − ε < α < 1 we get a contradiction. This finishes the proof of the
proposition. �

Define now δ = s − ŝ. We will study δ, and it will be shown that it has asymptotically positive
Laplacian (in a barer sense).

Proposition 17: Let (�, g, ln N ) be an asymptotically flat static solution with regular and
connected horizon H. The Laplacian of δ has the following asymptotic expression:

�δ ≤ −δ

(s + 2m)2
+ O(

1

s3
),

in the barer sense.

Note that δ ≥ 0. However, note too that because there are sequences {pi} for which δ(pi) → 0,
it cannot be said that �δ becomes negative outside a sufficiently big compact set. The asymptotic
expression is, however, still valid.

Proof: Recall first the expression for �ŝ in Eq. (34). We find first the asymptotic expression for
|∇ŝ|2. But observing that ŝ = 2m( 1

1−N 2 − 1) it is easily deduced from the asymptotic expression of
N that ∇ŝ = ∇r + O(1/r2). Thus |∇ŝ|2 = 1 + (1/r2) = 1 + O(1/s2).

Now subtract to the expression (38) with P = 1 and |∇s|2 = 1, the expression (34). That gives

�δ ≤ 2

s + 2m
(1 + m

s + 2m
) − 2

ŝ + 2m
(1 + m

ŝ + 2m
) + O(

1

s3
)

= −2δ

(s + 2m)(ŝ + 2m)
+ 2m

(ŝ2 − s2)

(s + 2m)2(ŝ2 + 2m)2
+ O(

1

s3
).

Thus

�δ ≤ −δ

(s + 2m)2
+ O(

1

s3
)

as claimed. �
We prove now a crucial property of δ, namely, that it is Lipschitz “at large scales.” To explain

the concept we need to introduce some terminology. Let {(r, θ , ϕ)} be a coordinate system as in
Proposition 6. Let D be the annulus in R3, D = {(r, θ , ϕ), 1 ≤ r ≤ 2}. For any λ > 0 sufficiently
small consider the map from D into � given by x̄ → x̄/λ. Denote by δλ the pull-back of δ to D,
namely, δλ(x̄) = δ(x̄/λ). Let x̄1 and x̄2 be two points in D. Denote by φ(x̄s, x̄2) the angle formed
by x̄1 and x̄2, namely, < x̄1, x̄2 >= |x̄1||x̄2| cos φ(x̄1, x̄2). We would like to show that there is
λ0 > 0 and K > 0 such that δλ is Lipschitz with constant K for any 0 < λ < λ0. The next Proposition
explains this property and two further that will also be needed later. It is perhaps the most technical,
but otherwise straightforward Proposition of the article.

Proposition 18: Let δ = s − ŝ. Then,

1. there exists K > 0 and λ0 > 0 such that for any x̄1, x̄2 in D and 0 < λ < λ0 we have

|δλ(x̄1) − δλ(x̄2)| ≤ K |x̄1 − x̄2|.
2. Let x̄1 and x̄2 be two points in D belonging to the same radial line, namely, x̄1 = β x̄2. Then

for any sequence {λi} ↓ 0 we have |δλ1 (x̄1) − δλi (x̄2)| → 0.

Proof: In � consider a coordinate sphere Sr0 = {x̄/r (x̄) = r0} (where {x̄} is a coordinate system
as in Proposition 6). The distance function from Sr0 to H is Lipschitz, say with constant K1, namely,
for any q0, q1 in Sr0 we have |s(q0) − s(q1)| ≤ K1|φ(q0, q1)|.

Let now x̄1 be a point in D. Let λ such that |x̄1|/λ � r0. Denote p1 = x̄1/λ. Let γ 1 be the
length minimizing geodesic joining x̄1/λ to H. Let q1 be the point of intersection of γ 1 with Sr0 .
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Consider a rotation of angle φ0 in R3, denote it by Rφ0 . Also denote by p2 = Rφ0 (p1), γ2 = Rφ0 (γ1),
and q2 = Rφ0 (q1). Let l1 be the length of γ 1 between p1 and q1 and let l2 be the length between p2

and q2 of γ 2.
We will show first that there is a constant K2 > 0 independent on λ such that |l1 − l2| ≤ K2|φ0|.

Note that in the coordinate system {x̄} we have g = gS + O(1/r3). Suppose γ 1 is parameterized
with respect to the arc-length, s̄, provided by the Schwarzschild metric gS . Let l(φ) = l(Rφ(γ 1)),
where 0 < φ < φ0. Then, we have

|∂φl| = |
∫ s̄1

s̄0=0

g(∇∂φ
γ ′, γ ′)

g(γ ′, γ ′)
1
2

ds̄|. (63)

Moreover,

g(∇∂φ
γ ′, γ ′) = g((∇∂φ

− ∇ S
∂φ

)γ ′, γ ′) + (g − gS)(∇ S
∂φ

γ ′, γ ′) + gS(∇ S
∂φ

γ ′, γ ′).

We note now that the last term on the right-hand side of the previous equation is zero, and the first
two terms on the right-hand side are O(1/s̄2). Using this in Eq. (63) we get that |l1 − l2| ≤ K2|φ0|
as desired.

We have now

s(p2) ≤ l2 + s(q2) ≤ l1 + s(q1) + K1|φ0| + K2|φ0| = s(p1) + (K1 + K2)|φ0|.
Because p1 and φ are arbitrary we have

|s(p1) − s(p2)| ≤ K |φ0|.
Thus for any x̄1 and x̄2 in D of equal norm, |x̄1| = |x̄2|, and λ (sufficiently small), we have

|δλ(x̄1) − δλ(x̄2)| = |s(
x̄1

λ
) − |x̄1|

λ
+ 2m − s(

x̄2

λ
) + |x̄2|

λ
− 2m| = |s(

x̄1

λ
) − s(

x̄2

λ
)| ≤ K |φ(x̄1, x̄2)|.

(64)

We continue with an observation. Recall that the Ricci curvature of g decays, in r, as O(1/r3)
(in facts it decays as 1/r4). Consider the annulus Dλ = {x̄, λ1/12 ≤ |x̄ | ≤ 2} and consider the map
from Dλ into � given by x̄ → x̄/λ. Let gλ be the pull-back of the metric g under this map. From the
fact that |Ric| decays as O(1/r3) we get sup{|Ricgλ

(x̄)|gλ
/x̄ ∈ Dλ} = O(λ

1
4 ). From this it follows

that, as λ tends to zero, and therefore as Dλ tends to the closed ball of radius two minus the origin,
the metrics gλ converge in C1, β (for any 0 < β < 1) to the flat metric over any fixed annulus Dλ1 ,
0 < λ1 < 2. Thus for any x̄ ∈ D and sequence {λi} ↓ 0, length minimizing geodesics, γ p, joining
p = x̄/λ to H converge in C1 over any Dλ1 to the radial line passing through x̄ .

What we would like to know now is the “rate” at which the geodesics approach the radial lines.
More precisely, we will study the gS-angle ξ , formed by ∂r and γ ′ at any point along γ . To this
respect we proceed as follows. Consider the rotational killing fields X of the Schwarzschild solution.
For every X, we have |X |g = r (1 + O(1/r )). Given one of the X’s, we compute, along the geodesic
γ p (again p = x̄/λ),

g(γ ′, X )′ = g(γ ′,∇γ ′ X ) = g(γ ′, (∇γ ′ − ∇ S
γ ′)X ) + gS(γ ′,∇ S

γ ′ X ) + (g − gS)(γ ′,∇ S
γ ′ X ).

The second term on the right-hand side of the previous equation is zero, while the other two are of
the order O(1/r2) = O(1/s2). Let q be the first point where γ p reaches the radial sphere Sr0 (r0 is
fixed) and let p1 be any intermediate point between p and q. Integrate now g(γ ′, X )′ (with respect
to the g arc-length, s) between s(p1) and the value of s(q) using the estimate we have found before
for g(γ ′, X ) to get

|g(γ ′, X )(p1) − g(γ ′, X )(q)| ≤ c1,

where c1 is a constant independent on p1 and q. Note that this inequality is valid for any rotational
killing field X. Observing that rotational killing fields at Sr0 have bounded norm, we get

|g(γ ′, X )(p1)| ≤ c2,
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where c2 is a constant. Moreover,

gS(γ ′, X ) = g(γ ′, X ) + (gS − g)(γ ′, X ) = g(γ ′, X ) + O(1/r ).

Thus, we have

|gS(γ ′, X )| ≤ c3,

where c3 is a constant. Pick now the rotational killing field X which is collinear, at p1, to the
component of γ ′, gS-perpendicular to ∂r. Let ξ be the gS-angle formed by ∂r and γ ′. We have

|gS(γ ′, X )(p1)| = |X |gS (p1)||γ ′|gS | sin ξ (p1)| ≤ c4,

where c4 is a constant. So we get

| sin ξ | ≤ c5

r
,

where c5 is a constant. We have

dr

ds
= gS(∇ Sr, γ ′) = 1 + O(1/r2) = 1 + O(1/s2). (65)

We will use this inequality in what follows. Let x̄1 be a point in D. Let p1 = x̄1/λ and let γ be a
geodesic minimizing the length between p1 and H. Let p2 be a point in γ such that p2 = x̄2/λ with
x̄2 in D. Integrating (65) between s(p1) and s(p2) we get

r (p1) − s(p1) = r (p2) − s(p2) + |x̄1 − x̄2|O(λ).

Therefore,

|δλ(x̄1) − δλ(x̄2)| = |x̄1 − x̄2|O(λ). (66)

We are ready to prove the proposition. Let x̄1 and x̄2 be two points in D. Let p1 = x̄1/λ and
p2 = x̄2/λ. Let p3 = x̄3/λ be the point of intersection of the length minimizing geodesic joining p1

to H and the coordinate sphere S|x̄2/λ|. From (64) and (66) we get

|δλ(x̄1) − δλ(x̄2| ≤ |δλ(x̄1) − δλ(x̄3)| + |δλ(x̄3 − δλ(x2)| ≤ |x̄1 − x̄3|O(λ) + Kφ(x̄3, x̄2).

As |x̄1 − x̄3| ≤ c6dD(x̄1, x̄3), for some constant c6, the item 1 of the proposition follows. Item 2
follows from the fact that O(λ) → 0 as λ → 0. �

The following direct implication will be crucial for the discussion that follows.

Corollary 4: For any sequence {λi} such that λi ↓ 0, there exists a subsequence {λik } ↓ 0 and
a Lipschitz function δ0 (depending on {λik }) for which δλik

converges uniformly to δ0 on D. The
function δ0 is constant on radial lines.

We would now like to prove that the coordinate-distance lag δ̄({pi }) of any divergent sequence
{pi} is zero. Naturally, this is the same as saying that δ converges uniformly to zero at infinity. If this
is not the case, then it is simple to see, arguing by contradiction, that we would be in the following
situation. There would exist {λi} with λi ↓ 0 such that δλi converges uniformly to a Liptschitz
function δ0 and there would exist points x, y in D for which δ0(x) = 0, |x| = 3/2 and δ0(y) > 0, |y| =
3/2, and |x − y| < 1/2. Assume we are in such situation. Define in D the Euclidean balls Bx = B(x,
|x − y|) and By = B(y, ξ ), where ξ is small enough to have δ0|By > c1 > 0, where c1 is a constant.
Following Ref. 6 (p. 258) we can find a function h on B̄x such that

1. h

∣∣∣∣
(∂(Bx )\By )

< c2 < 0, where c2 is a constant,

2. h(x) = 0,

3. �gλi
h

∣∣∣∣
B̄x

> c3 > 0, where c3 is a constant and gλi is the scaled metric λ2
i g.
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Note that the scaled metrics λ2
i g converge (in C∞) to the flat Euclidean metric. As δλi converges

uniformly to δ0 we deduce that there is μ0 > 0 such that for any 0 < μ ≤ μ0 (and i ≥ i0(μ0)) we
have (−δλi + μh)|∂ Bx < μc4 < 0, where c4 is a constant. We also have lim(−δλi (x) + μh(x)) → 0.
It follows that having chosen i1 big enough, the function −δλi + μh, (μ ≤ μ0), for i ≥ i1 has a
maximum on Bx. Denote it by zi. If the function swere to be smooth at zi/λi and, therefore, −δλi + μh
were smooth at zi, then one would get a contradiction to the maximum principle, as for i sufficiently
big, one would have

�gλi
(−δ̃λi + μh)(zi ) ≥ μc3

2
> 0.

We explain now how to use Proposition 10 to overcome the case when zi are not smooth points
of s. One can replace s by s
i , for a suitable {
i} ↓ 0, in the expression δλi (x) = (s − ŝ)(x/λi )
in such a way that the new expression (−(s
i − ŝ) + μh)(x/λi ), has a maximum z̃i on Bx. Further,
by Proposition 10 one can replace s
i by s̃
i in such a way that the new expression δ̃λi (x) =
(s̃
i − ŝ)(x/λi ) satisfies

1. −δ̃λi (x) = −(s̃
i − ŝ)(x/λi ) ≤ −(s
i − ŝ)(x/λi ),
2. −δ̃λi (z̃i ) = (s
i − ŝ)(z̃i/λi ), and thus −δ̃λi + μh has a maximum at z̃i on Bx.
3. �gλi

(−δ̃λi + μh)(z̃i ) ≥ μc3

2 .

These three facts now contradict the maximum principle. �
We have thus proved in the following.

Proposition 19: Let (�, g, ln N ) be an asymptotically flat static solution with regular and
connected horizon. Then for any divergent sequence {pi}, the coordinate-distance lag δ̄({pi }) is
zero.

2. Area and volume comparison

Proposition 20: Let (�, g, ln N ) be an asymptotically flat static solution with regular and
connected horizon. Consider a sequence {
i} ↓ 0. Let F
i be the congruence of length minimizing
geodesics to H
i . Then, for every L > 0 we have

V ol(∪γ∈F
i ,l(γ )≤L{γ }) → 0

as 
i ↓ 0. Above {γ } means the set of points in γ .

Proof: The first goal to achieve is to make the monotonicity of M to look like a comparison of
areas and consequently a comparison of volumes. Let {
i} ↓ 0. Consider for each 
i the congruence
F
i of length minimizing geodesics to H
i . We will work outside the locus at all times. Let dA be
the element of area of the level sets of the congruence. Let s
i be the distance function to H
i . Then,

θ = 1

A

d A

ds
i

.

Let γ be a geodesic in F
i . Consider Ma with a = 2m over γ . Denote by M
i the value of M at
the initial point of γ in H
i . Then from the monotonicity of M we have

(
1

2A

d A

ds
i

(s
i + 2m)2 − (s
i + 2m))N 2 ≤ M
i .

Rearranging terms we get

d

ds
i

(
d A

(s
i + 2m)2)
) ≤ 2M
i

N 2(s
i + 2m)2
d A.

We thus get

d

ds
i

ln
d A

(s
i + 2m)2
≤ 2M
i

N 2(s
i + 2m)2
.
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Integrating we obtain

d A

(s
i + 2m)2
≤ d A0

(2m)2
exp(

∫ s
i

0

2M
i

N 2(s
i + 2m)2
ds
i ), (67)

where dA0 is the element of area of H
i . Recalling that N 2 = ŝ/(ŝ + 2m) it is clear that we need an
estimation of ŝ in terms of s
i to have an inequality in terms of s
i only. We advocate to that in the
following lines. We explain first how to get a relation between s and s
i and then we explain how
to obtain one in terms of ŝ and s
i .

First, recall from (43) that for any point q in H
i we have (for 
i small enough) that s(q) =
ŝ(q) + O(ŝ

3
2 ). Now let p be a point in γ . Then we have s(p) ≤ s
i (p) + s(q), where q is the initial

point of γ at H
i . Thus s(p) ≤ s
(p) + (1 + ε)ŝ(p) where ε = O(ŝ(p)
1
2 ). On the other hand let γ̄

be a length minimizing geodesic joining p to H. Let q̄ be the point of intersection to H
i . Then we
have

s(p) = dist(p, q̄) + s(q̄) ≥ s
i (p) + ŝ(q̄) + O(ŝ(q̄)
3
2 ) ≥ s
i (p) + (1 − ε)ŝ(q),

where ε = O(ŝ(q)
1
2 ). Thus for every point p in γ we have

(1 − ε)ŝ0 + s
i (p) ≤ s(p) ≤ s
i (p) + (1 + ε)ŝ0,

where we have made ŝ0 = ŝ(q) to simplify the notation. This establishes the relation between s and
s
i . We obtain now the desired relation between s
i and ŝ. We will keep the notation as before.
Precisely, γ will be length minimizing geodesic segment to H
i and q and q1 will be its initial and
final points. From Proposition 16, we know that |∇ŝ| ≤ 1, therefore, for any point p between q and
q1 we have

ŝ(q1) − ŝ(p) ≤ s
i (q1) − s
i (p),

ŝ(p) − ŝ(q) ≤ s
i (p).

Using this we have

(1 + ε)ŝ0 ≥ ŝ(q) ≥ ŝ(p) − s
i (p) ≥ ŝ(q1) − s
i (q1) ≥ ŝ(q1) − s(q1) + (1 − ε)ŝ0.

Now if s(q1) ≥ L̄ and L̄ = L̄(
i ) is big enough we have ŝ(q1) − s(q1) ≥ −εŝ0. As a result, we have
the relation

(1 + ε)ŝ0 ≥ ŝ(p) − s
(p) ≥ (1 − 2ε)ŝ0. (68)

We have now all the elements to proceed with the proof of the proposition. Consider the set of
the initial points on H
i of the geodesics in F
i whose lengths are greater than L̄(
i ). Denote such
set by �
i . We will show now that as 
i ↓ 0, and therefore as H
i approaches H, the area of �
i

with respect to the area element induced from g tends to the total area of the horizon H.
Consider the argument in the exponential function of (67) with the upper limit of integration

equal to L̄ . Using the relation (68), we obtain

∫ L̄

0

M0

N 2(s
i + 2m)2
ds
i =

∫ L̄

0

M0(ŝ + 2m)

ŝ2(s
i + 2m)2
ds
i

≤
∫ L̄

0

M0(s
i + 2m + (1 + ε)ŝ0)

(s
i + (1 − 2ε)ŝ0)(s
i + 2m)2
ds
i .

This last integral can be further split into

∫ L̄

0

M0

(s
i + (1 − 2ε)ŝ0)(s
i + 2m)
ds
i + R(ŝ0),
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where R(ŝ0) is an expression which is easily seen to tend to zero as ŝ0 tends to zero. We integrate
now Eq. (67) in dA. After integrating in dA, the left-hand side tends to 4π for a suitable divergent
sequence of L̄’s. The right-hand side is easily integrated to be (discard the term R(ŝ0))∫

�
i

ŝ0

(ŝ0 + 2m)(2m)2
(

2m

(1 − 2ε)ŝ0
)

2M0
2m−(1−2ε)ŝ0 d Ag,

where d Ag = N 2d A0 = ŝ0
ŝ0+2m d A is the element of area induced on H
i from the metric g. As a

result we get the inequality

4π ≤ lim sup A(�
i )

4m2
lim sup ŝ

2M0−2m+(1−2ε)ŝ0
2m−(1−2ε)ŝ0

0 . (69)

Now, from the proof of Proposition 4 it is seen that |M0 − m| ≤ c1ŝ
1
2
0 , where c1 is a positive constant.

Thus we get

ŝ
2M0−2m+(1−2ε)ŝ0

2m−(1−2ε)ŝ0
0 ≤ ŝ

c2ŝ
1
2
0

0 → 1 as ŝ0 → 0,

where c2 is a positive constant. Therefore, we get from this and Eq. (69)

16πm2 ≤ lim sup A(�
i ) ≤ A = 16πm2,

where A is the area of the horizon. Thus lim sup A(�
i ) = A. This was the crucial estimate. From
it, it will follow that for any L < ∞ fixed, there is a subsequence 
i j such that the area of the set of
initial points in H
i j

of the geodesics in F
i j
whose length is less or equal than L, tends actually to

zero. This would finish the proof of the proposition. We do that now. For every j, denote by �L ,
i j

such set. For every q in �L ,
i j
let γ q be the corresponding geodesic in F
i j

whose total length is
less than or equal to L. Denote by UL ,
i j

the union U = ∪q∈�L ,
i j
{γq}. Now, recalling that dV′ = dA,

integrating equation (67), and following the same treatment at the horizon as before gives

V olg(UL ,
i j
) ≤ c(L)Ag(�L ,
i j

).

Note that in this equation, the volume is found with g, while the area is found with g. As A(�i j ) → 0,
the proposition follows. �

The proposition before has the following quite important Corollary.

Corollary 5: Let (�, g, ln N ) be an asymptotically flat static solution with regular and connected
horizon. Then

1. s = ŝ and therefore s is smooth.
2. |∇ŝ|2 = 1.
3. The integral curves of ∇ŝ are geodesics minimizing the length between any two of its points.
4. The set of integral curves of ∇ŝ form an integrable congruence of geodesics.

Proof: Let p ∈ �\H. Let {
i} such that 
i ↓ 0. Following Proposition 20 there is a sequence
{γ i} of length minimizing geodesics to H
i with initial point qi (at H
i ), l(γ i) → ∞ and γ i(s(p)) →
p. Let pi be either the end point of γ i or, if l(γ i) = ∞, a point on γ i such that s(pi) → ∞. We have

ŝ(pi ) − ŝ(qi ) =
∫ s̄(pi )

s̄(qi )=0
< ∇ŝ, γ ′ > ds̄ = s̄(pi ) − s̄(qi ) −

∫ s̄(pi )

s̄(qi )
(1− < ∇ŝ, γ ′ >)ds̄. (70)

where s̄ is the arc-length. But by Proposition 19, we have lim δ(pi ) = s(pi ) − ŝ(pi ) = 0 and thus
we have lim s̄(pi ) − ŝ(pi ) = 0 (note that lim |s(pi ) − s̄(pi )| = 0). By Proposition 16, we have
(1− < ∇ŝ, γ ′ >) ≥ 0, thus from Eq. (70) we get

0 ≤ lim
∫

(1− < ∇ŝ, γ ′ >)ds̄ = 0.
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This shows |∇s|(p) = 1. Moreover, we have

ŝ(p) = lim ŝ(pi ) − ŝ(qi ) = lim s̄(pi ) − s̄(qi ) −
∫ s̄(pi )

s̄(qi )
(1− < ∇ŝ, γ ′ >)ds̄ = lim s̄(pi ) = s(p).

Because p is an arbitrary point we have thus proved items 1 and 2 of the proposition.
To prove the third item we proceed like this. Let γ be an integral curve of ∇ŝ with initial point

p and final point q. Suppose that γ does not minimize the distance between p and q, namely, that
there is another curve γ̃ joining p and q and having smaller length. Then

s(q) = s(p) + (s(q) − s(p)) = s(p) + l(γ ) < s(p) + l(γ̃ ) ≤ s(q),

which is a contradiction.
Item 4 of the proposition follows directly from the fact that the congruence is orthogonal to the

level set of any regular value of s. �
3. The uniqueness of the Schwarzschild solutions

Theorem 3: Let (�, g, ln N ) be an asymptotically flat static solution with regular and connected
horizon. Then the solutions is a Schwarzschild solution of positive mass.

Proof: By Corollary 5 the set of integral curves of ∇ŝ is an integrable congruence of geodesics.
Recalling that |∇ŝ| = 1 and �ŝ = θ , where θ is the mean curvature of the congruence. Using these
facts in Eq. (34) we get that

Ma=2m = (
θ (s + 2m)2

2
− (s + 2m))N 2 = m,

over any geodesic of the congruence. The conclusion that the solution is the Schwarzschild solution
follows from Proposition 2 and the remark after it. �
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